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Abstract

This paper addresses the stability and vibration characteristics of three-dimensional steady motions (equilibrium
configurations) of translating beams undergoing boundary misalignment. System modeling and equilibrium solutions
for bending in two planes, torsion, and extension were presented in Part I of the present work. Stability is determined
by linearizing the equations of motion about a steady motion and calculating the eigenvalues using a finite difference dis-
cretization. For the case of no misalignment, the calculated eigenvalues are compared to known values. When the beam is
misaligned, the system initially enters a planar configuration and the results indicate that the planar equilibria lose stability
after the first bifurcation point. Eigenvalue behavior of the planar equilibria after the first bifurcation point is shown to be
strongly influenced by translation speed. Eigenvalue behavior about non-planar equilibria and vibration modes about
selected equilibria are also presented.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In Part I of the present work (Orloske et al., 2005), the equations of motion of a three-dimensional axially
moving beam under tension were developed, and the equilibrium equations of the system were analyzed using
continuation and bifurcation software (Doedel et al., 1997). Planar and three-dimensional non-planar steady
motions (or equilibria) both occur. In order to understand what misalignments cause buckling and into which
buckled configuration the system will deform, the stability of the equilibria must be analyzed.

In this paper, stability and free vibration characteristics are determined by linearizing the equations of
motion about a general three-dimensional equilibrium configuration and calculating the eigensolutions using
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a finite difference discretization. For purposes of comparison, the eigensolutions about the trivial configura-
tion are determined first. Then, eigensolutions about selected non-trivial equilibria are analyzed. Attention fo-
cuses on how the eigensolutions and equilibrium stability evolve as the equilibria change due to misalignment
and changing translation speed. Frequent reference will be made to the equilibria in Part I of the present work.

Previous work on the free vibration characteristics of translating beams is limited to single-plane flexural
(Mote, 1965; Simpson, 1973) or coupled flexural-extensional (Wickert, 1992) systems. Wickert examined
the free vibration characteristics of a coupled flexural-extensional translating beam under tension. He in-
cluded the effect of translation speed on the fundamental frequency and the influence of nonlinear stiffness
terms on the free response. A stability and bifurcation analysis of the same system was conducted in (Pellicano
and Vestroni, 2000). Hwang and Perkins (1992) investigated the vibration characteristics of a translating beam
that includes the effect of initial curvature due to the bending moment created by the bounding pulleys. Their
work highlights the sensitivity of the critical speed behavior in the presence of system imperfections.

2. Eigenvalue problem formulation

To assess the behavior of the system for small motions about an equilibrium, the equations of motion de-
rived in (Orloske et al., 2005) are linearized about an arbitrary equilibrium configuration. These equations are

v/

G,=8+dc, oa=uvw

& =0 (1)
where expressions for the G, are given in the Appendix and all notation follows (Orloske et al., 2005).
Let the deformation variables be collected in the vector
u(x, 1)
v(x,t
Y= w((x7 t>) (2)
0(x,1)
By assuming the separable solution
Y*(x, 1) = Y(x)e” (3)
the following quadratic eigenvalue problem is formed
(M 4G +K)Y =0 (4)

where M, G, and K are spatial mass, gyroscopic, and stiffness operators constructed from (1). The stability of
the system is assessed from the eigenvalues of (4). Due to the cumbersome length of the linearized equations of
motion, the symmetry and definiteness properties of M, G, and K are not verified. It is anticipated, and sub-
sequently verified, that the system possesses the properties of a conservative, gyroscopic continuum, including
complex eigensolutions that always occur in complex conjugate pairs. Divergence and flutter instabilities occur
at high speed.

The natural frequencies and vibration modes about a specified equilibrium are determined by finite differ-
ence discretization of (4). The beam is discretized into n — 1 sections of uniform width /. Spatial derivatives in
the four equations of motion are approximated using the central difference expressions (Koenig, 1998)

dar| 1 d’y 1
e :ﬂ(_yi—l+yi+l)7 a0 :ﬁ(_Yi—Z'i_ZYi—]_2Yi+1+Yi+2)

i i 5
’y| 1 d'y| 1 2
w':ﬁ()}i—l =2Yi+ Y1), O | :E(Yi—2_4yi—l +6Y, —4Yi + Yip)

where Y;is a deformation variable (one of u, v, w, 0) evaluated at mesh point i. Let mesh points 1 and # reside
on the domain boundary. When (4) is expressed at each interior mesh point, 4n — 8 equations are obtained
from four equations at each of n — 2 mesh points. u and 6 are acted on by second-order spatial derivatives
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in (4), so, from (95), these variables must be evaluated at mesh points 1 and »n. The necessary values are supplied
by the boundary conditions. v and w, however, are acted on by third and fourth-order operators and, from (5)
at points 2 and n — 1, must be evaluated beyond the domain boundaries at points 0 and » + 1, in addition to
points 1 and n. By using the zero slope boundary conditions with the first of (5) the following relations are
obtained for v and w at the points 0 and n+ 1

Yo=Y;, Y=Y, (6)

Given the length of the linearized equations, the finite difference process is automated with computer algebra
software.

Without applying boundary conditions, the discretized forms of M, G, and K are (4n — 8) x (4n + 4) matri-
ces and Y is a vector of dimension 4n + 4. The 12 boundary conditions are applied by defining the constraint
matrix D such that

Y = DY (™)
where Y is the vector of deformation variables at the interior mesh points and is of dimension 4n — 8. Using
(7) the discretized form of the eigenvalue problem becomes

(M + G +K)Y =0 (8)

M=MD, G=GD, K=KD (9)
/I\Z, é, and K are all square (4n — 8) X (4n — 8) matrices. None are symmetric or skew-symmetric due to ele-
ments arising from the boundary conditions.

The preceding finite difference formulation is for a mesh of uniform width. The numerical equilibrium solu-
tion obtained in Part I of the present work (Orloske et al., 2005) uses mesh adaptation resulting in equilibrium

solutions on a non-uniform mesh of 2001 mesh points. These are linearly interpolated to a uniform mesh of n
points prior to applying the finite difference method.

3. Analysis about the trivial equilibrium

The linearized equations of motion about the trivial equilibrium, which are all decoupled, are

(cz—l>u"+20i/+i20 (10)
1
(B: — j WY + (= IV +2¢V — " — 2j,cV" + 5 =0 (11)
(ﬁ— —j,1(:2>wIV + (& = W' 4 2eW — j, it — 2j,ew” +i0 =0 (12)
n
{jéc2 — ,u(ﬁg +§L> - Bé] 0" + 2j§c9l +j:0=0 (13)
n

The natural frequencies are determined in closed-form for the second-order equations and by Galerkin’s meth-
od for the fourth-order equations. This serves as a check for the finite difference formulation. In addition, the
critical speed eigenvalue problem of these equations is obtained in closed-form and complements the associ-
ated results in Fig. 7 of (Orloske et al., 2005). All results are for the same parameters used in Table 1 of
(Orloske et al., 2005) unless otherwise specified.

3.1. Natural frequencies

Egs. (10) and (13) admit closed-form solutions of their corresponding eigenvalue problems. Letting y be u
or 0, the solution y(x,f) — y(x)e'“’ gives the differential eigenvalue problem of (10) or (13)

ey + ey oi — ey’ =0 (14)
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where the ¢; are parameters. The characteristic equation of (14) with the boundary conditions y(0) = y(1) = 01is

explifo) = +1, = YO -4 (15)

201

The parameters of (10) and (13) are such that ¢3 — 4cjc; > 0 and f is real for both systems. The union of solu-
tions for +1 and —1 in (15) yields

o= 4—412,. .. (16)

B
With parameter values from Table 1 of (Orloske et al., 2005), the first natural frequency of (10) is 58.323, and
the first natural frequency of (13) is 5.5906.

Egs. (11) and (12), which have identical structure and differ only in their coefficients, are more complex, and
their eigenvalue problem does not admit a simple closed-form solution. The first several eigenvalues of these
equations are determined using a Galerkin discretization. Ten trial functions p/(x) satisfying all boundary
conditions are drawn from a complete set of polynomials. Trial functions of increasing polynomial order are
constructed by considering the boundary conditions and the orthonormality relation (p;p;) = d;;, where J;; is
the Kronecker delta and the inner product is defined as (p;, p;) = fol pp;dx. Using the parameters in Table 1 of
(Orloske et al., 20095), the first natural frequency of (11) is 3.1496 and the first natural frequency of (12) is 27.274.

Using the exact solution to (10) and (13) along with the Galerkin solution to (11) and (12), a convergence
study was performed to establish the necessary finite difference mesh resolution for the solution. The results
are given in Fig. 1 and Table 1. In this work n =401 mesh points are used.

3.2. Critical speeds

When the misalignment is zero and the speed is sufficiently high, a pair of complex conjugate imaginary
eigenvalues approach and coalesce at zero. Above this speed instability is possible. The speeds at which these
eigenvalues become zero are termed the critical speeds for zero misalignment. Such speeds were illustrated in
Fig. 7 of (Orloske et al., 2005) where the critical misalignment loci touch the abscissa. In this paper, those pre-
viously determined critical speeds are shown to correspond to the critical speed eigenvalue problems of (11)
and (12).
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Fig. 1. Convergence study of the first four natural frequencies about the trivial equilibrium for varying numbers of finite difference mesh
points.
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Table 1

The first four natural frequencies about the trivial equilibrium for parameters in Table 1 of (Orloske et al., 2005)
Finite difference, n = 401 Analytical Galerkin Mode type
3.14949 N/A 3.14963 Flexural (v-dir.)
5.59055 5.59064 N/A Torsional
6.51219 N/A 6.51257 Flexural (v-dir.)
10.24155 N/A 10.24238 Flexural (v-dir.)

Results calculated using finite difference discretization with 401 mesh points are compared to analytical (from (16)) and Galerkin results.

Table 2
The first five critical speeds about the trivial equilibrium calculated from AUTO97 (as shown in Fig. 7 of (Orloske et al., 2005)), by
determining the roots of (19), and using Galerkin discretization with ten polynomial trial functions

Galerkin AUTO97 Analytical
1.028797 1.028797 1.028797
1.058030 1.058030 1.058030
1.110482 1.110482 1.110482
1.162734 1.162732 1.162732
1.234769 1.233969 1.233969

Egs. (10) and (13) do not yield any critical speeds for zero misalignment. For both cases, (14) with w =0
yields

(csc® —¢5)y" =0 (17)

where ¢4 and c¢s are constants from (10) and (13). Treating (17) as an eigenvalue problem for ¢?, the only eigen-
value is ¢* = ¢s/c4. This eigenvalue has infinite multiplicity and implies any comparison function satisfies (10)
or (13) and so is an eigenfunction. This degenerate case does not manifest itself as a critical speed in the numer-
ical solution.

Consequently, all critical speeds for zero misalignment result from (11) and (12). These critical speed
(w = 0) eigenvalue problems admit closed-form solutions. Letting y be v or w, the eigenvalue problem of
(11) or (12) takes the form

(cs — x4+ (= 1)y =0 (18)

where ¢? is the eigenvalue. Using y(0) = y(1) = »'(0) = y’(1) = 0 with the general solution of (18) gives the
characteristic equation

. -1 -1
s (ﬁ) Vet —1 +2\/ Ce —C'7C'2 |f:0$ (ﬁ) — 1] =0 (19)

By inspection of (19) ¢* =1 is a solution. When ¢* = 1 is substituted into (18), however, the second-order
derivative term vanishes, and solution of the resulting equation under clamped-clamped boundary conditions
yields the trivial solution. Therefore ¢ =1 is not a critical speed for zero misalignment.

Table 2 compares the critical speeds for zero misalignment calculated from (19) with the numerical results
calculated in (Orloske et al., 2005). Results calculated using Galerkin’s method are also included to demon-
strate the accuracy provided by 10 polynomial trial functions. The results in Table 2 show excellent agreement
between the three methods. The lowest critical speeds arise from (11). The first critical speed to arise from (12)
is ¢ = 7.4844.

4. Results
4.1. Eigenvalues about planar equilibria

For speeds less than ¢ = 1.0288 the trivial solution is the only equilibrium, and it is stable. As discussed in
(Orloske et al., 2005), when the system undergoes misalignment the initial equilibria are planar. Prior to the
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first critical misalignment, the planar equilibria are the only equilibria, and these are stable. This is summa-
rized in Fig. 7 of (Orloske et al., 2005). As the beam is misaligned further, the natural frequencies about
the planar equilibria decrease until the fundamental frequency reaches zero. At this first critical misalignment,
a divergence instability occurs and planar equilibria are no longer stable.

Fig. 2 illustrates how the eigenvalues change as misalignment is increased for the case of zero translation
speed. Sections a, b, ¢, and d correspond to the first four critical misalignments. The locations of the critical
misalignments agree with Fig. 7 of (Orloske et al., 2005). At each critical misalignment, a pair of purely
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imaginary, complex conjugate eigenvalues coalesce and a divergence instability develops. These instabilities
are terminal in that the planar equilibrium eigenvalues never regain stability as misalignment increases further.

When the translation speed is non-zero, the eigenvalue behavior is more complex. The results when ¢ = 0.3
are given in Figs. 3 and 4. Again, sections a, b, ¢, and d correspond to the first four critical misalignments. The
eigenvalue behavior near critical misalignments is the same as the zero speed case in that a pair of purely imag-
inary, complex conjugate eigenvalues coalesce at zero and a divergence instability develops. In contrast to the
zero speed case, however, non-zero translation speed causes complex eigenvalues and flutter instabilities
(eigenvalues with positive real part and non-zero imaginary part) in planar equilibria. For the purposes of dis-
cussion, let the two eigenvalues that coalesce and then form a divergence instability at section o be denoted 4,
where oo =a, b, ¢, d.

At a speed of ¢ = 0.3 the creation and behavior of flutter instabilities is linked to the first interaction of
Re(4,) with the real parts of other eigenvalues. At section e of Fig. 4, /, coalesces with 7, and the first flutter
instability develops. This occurs where Re(4,) first meets the real part of another eigenvalue, namely Re(4,).
Immediately before coalescing at section e, 4, and 4, are purely real and hence divergent unstable. After
section e, the eigenvalues separate, one acquires a positive and the other a negative imaginary part. Thus,
an eigenvalue with flutter instability bifurcates from the colliding divergent eigenvalues. We label this pair
Aas 4 on Fig. 4. This differs from the more conventional behavior whereby flutter instability evolves from
collision of two purely imaginary eigenvalues.

The first interaction /. has with the real part of another eigenvalue is at section f. At this section A. inter-
sects the real part of the flutter instability eigenvalue pair A,, 4,. This causes a sudden change in how the flutter
instability eigenvalue pair A,, 4, evolves with misalignment. The second time A. crosses a pair of flutter insta-
bility eigenvalue (section h) appears to have no impact on the eigenvalue behavior. As misalignment is
increased, /. decreases while 1, increases. At section g these two real eigenvalues coalesce and a new flutter
instability is formed, akin to the behavior of 4, and 7.

Increasing the translation speed to ¢ = 0.9 changes the eigenvalue behavior dramatically. The results are
given in Figs. 5 and 6. Once again, sections a, b, c, and d correspond to the first four critical misalignments.
The eigenvalue behavior near the first critical misalignment is the same as the previous cases in that a pair of
purely imaginary, complex conjugate eigenvalues coalesce at zero and a divergence instability develops. When
misalignment is increased past the first critical misalignment, however, the eigenvalue behavior bears little
resemblance to the lower speed results.
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Fig. 5. Eigenvalues about the planar equilibria when ¢ = 0.9.

After section a, Re(4,) reaches zero again at section b, at which point 1, again becomes stable (Fig. 6a). Just
after 1, becomes stable at section b, it coalesces with 4, at section n and flutter instability forms (Fig. 6a). This
flutter instability develops in a conventional way from two colliding, purely imaginary eigenvalues, in cons-
trast to section e of Fig. 4. For the narrow range of misalignments between sections b and n the planar equi-
libria regain stability (Fig. 6a). This unexpected phenomenon was not observed in the lower speed results:
additional misalignment can stabilize an equilibrium that is unstable for lower misalignment. When misalign-
ment is increased further beyond section n, Re(/,, 4,) vanish at section k (Fig. 6b). At this misalignment 4, and
Ap separate from one another as purely imaginary stable eigenvalues in a ‘reverse flutter’ bifurcation. One
eigenvalue’s imaginary part increases (let this be 4,) while the other decreases. Im(4,) reaches zero at section
¢ where the pair of purely imaginary, complex conjugate eigenvalues coalesce and a divergence instability
develops. For the range of misalignments between sections k and c the planar equilibria regain stability for
the second time after the first critical misalignment.

When misalignment is increased beyond the third critical misalignment (section ¢ in Fig. 6b) 4, coalesces
with 1, at section d and a flutter instability develops. This is a different flutter interaction than at the lower
speed ¢ = 0.3 (sections e and g of Fig. 4), although it resembles the /,, 4, interaction at section n. For the range
of misalignments after section d explored in this work, the eigenvalue pair 4, and 4, continue to exhibit flutter.
Also at section d, Re(4,) reaches zero and 4, becomes purely imaginary. From their separation at section k, 1,
had remained stable while 4, had digressed to instability (section c¢). At the same point (section d), they now
exchange stability through seemingly unrelated interactions: 4, experiences flutter with A, while 4, reverts from
divergence to stability. At section m, Im(4;) intersects Im(4,, 2,), but no apparent impact on eigenvalue behav-
ior is observed. At section j, 4; coalesces with 4, and a new flutter instability develops, akin to the behavior of
Aq and A,

The evolution of natural frequencies (Im(4)) with misalignment is illustrated in Fig. 7 for the stationary and
moving beams. When the beam is stationary, the natural frequencies experience crossing with other natural
frequencies as misalignment is increased. Increasing speed to ¢ = 0.3 causes the natural frequencies to untangle
from one another such that the crossing of natural frequencies is replaced by curve veering. Note that for zero
and non-zero speeds the natural frequencies do not decrease monotonically as misalignment is increased. Un-
der certain ranges of misalignment some natural frequencies increase before ultimately decreasing to zero at a
critical misalignment.
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4.2. Eigenvalues about non-planar equilibria

At each critical misalignment an out-of-plane equilibrium bifurcates from the planar solution. Selected
bifurcation branches and the first three out-of-plane solutions for ¢ =0.3 were given in (Orloske et al.,
2005). The eigenvalues along the first out-of-plane solution branch starting at ¢ =0.0122 for ¢ =0.3 (see
Fig. 9 of (Orloske et al., 2005)) are illustrated in Fig. 8 and indicate that this configuration is stable.
0]l = 0 in Fig. 8 corresponds to the planar solution eigenvalues at section a of Fig. 4. Note that a smooth
transition of the eigenvalues from the planar solution to the out-of-plane solution occurs as misalignment
is increased.

Fig. 9 displays the eigenvalues along the second out-of-plane solution branch starting at a =0.0142
for ¢ = 0.3, where ||0]| =0 in Fig. 9 corresponds to the planar solution eigenvalues at section b of Fig. 4.
Again, the eigenvalues undergo a smooth transition from the planar solution to the out-of-plane solution
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as misalignment is increased. As a consequence, the divergence instability from /, that is present for the planar
configuration in 0.0122 <4 < 0.0142 (Fig. 4) persists when one moves along the second out-of-plane solution
branch. Similar trends are observed in Fig. 10 showing the eigenvalues along the third out-of-plane solution
branch starting at @ = 0.0161 for ¢ = 0.3. Thus, these bifurcated out-of-plane equilibria are unstable.

For a speed of ¢ = 0.3, at each critical misalignment a pair of purely imaginary, complex conjugate eigen-
values coalesce at 4 =0, and a divergence instability develops in the planar solution (Fig. 3). When buckling
into an out-of-plane solution occurs, the coalescing eigenvalues at 4 = 0 of the planar solution become real
and unstable; in contrast, the corresponding pair of eigenvalues of the bifurcated out-of-plane solution evolve
from 4 = 0 to become purely imaginary and stable. In other words, buckling into an out-of-plane solution ‘sal-
vages’ stability of the eigenvalues coalescing at A = 0 for a critical misalignment. Eigenvalues other than those
coalescing at 4 = 0 are qualitatively unaffected by buckling. After the first critical misalignment for ¢ = 0.3, the
planar solution always suffers from divergence and, possibly, flutter instabilities. Because the eigenvalues
change continuously along branches bifurcating into out-of-plane configurations, the first out-of-plane equi-
librium branch is the only stable out-of-plane solution for the misalignments explored. Other branches inherit
at least one unstable eigenvalue of the planar solution (Figs. 9 and 10).
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correspond to eigenvalues that cause instability.

When speed is increased to ¢ = 0.9 the smooth transition of the eigenvalues from the planar solution to the
out-of-plane solution remains. The eigenvalues along the first out-of-plane solution branch starting at
a = 0.00643 for ¢ = 0.9 are qualitatively identical to Fig. 8 and indicate that this configuration is stable.

Fig. 11 displays the eigenvalues along the second out-of-plane solution branch starting at ¢ = 0.008257 for
¢=0.9. ||0|| =0 in Fig. 11 corresponds to the planar solution eigenvalues at section b of Fig. 6a. By buckling
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Fig. 11. Eigenvalues about the second out-of-plane solution branch in Fig. 9 of (Orloske et al., 2005) when ¢ = 0.9. The dashed lines
correspond to eigenvalues that cause instability.

into an out-of-plane solution at the second critical misalignment, 4,, which is stable beyond b for the planar
solution, reverts to divergence instability. Thus, this solution is unstable for all misalignments considered.

For a speed of ¢ = 0.9, the planar and out-of-plane eigenvalue behavior at the first two critical misalign-
ments show a noteworthy duality. As the first critical misalignment is crossed, the coalescing imaginary
(stable) planar eigenvalues become real (unstable) in the planar solution (Fig. 5). The corresponding zero
eigenvalues of the bifurcated out-of-plane solution, however, adopt the stability characteristics of the coalesc-
ing eigenvalues of the planar solution (i.e., imaginary). Converse behavior occurs at the second critical mis-
alignment at b. The coalescing planar eigenvalues at b are real, and they regain stability beyond b.
Simultaneously, the zero eigenvalues of the bifurcated out-of-plane solution become real for any misalignment
greater than b (Fig. 11). The planar solution eigenvalue behavior near these first two critical misalignments is
reminiscent of the eigenvalues and divergence instability of an aligned axially moving beam as speed is varied
near the first two critical speeds (Wickert and Mote, 1990).

Recall that just prior to the third critical misalignment for ¢ = 0.9 the planar solution regains stability
(section k of Fig. 6). Consequently, at section c in Fig. 6 there are no unstable eigenvalues. The eigenvalues
along the third out-of-plane solution branch starting at ¢ = 0.00989 for ¢ = 0.9 are illustrated in Fig. 12, where
||6]] = 0 corresponds to the planar solution eigenvalues at section ¢ of Fig. 6. Initially this out-of-plane con-
figuration is stable. In contrast, at lower speed (¢ = 0 and ¢ = 0.3) only the first bifurcated out-of-plane solu-
tion is stable. As misalignment is increased, however, the two dashed line eigenvalue loci in Fig. 12 coalesce
near ||0]] = 0.0025 and flutter instability develops.

The effect of changing translation speed on the equilibria after entering an out-of-plane solution was exam-
ined previously in Fig. 15 of (Orloske et al., 2005). For larger speeds, these solutions suffer from singularities
that prevented further extension of the branches. Solutions that start from ¢ = 0.9, however, do not suffer
these issues, and the stability at high speeds can be examined. The configuration that is considered is entered
by first setting the translation speed to ¢ = 0.9 and misaligning the beam until the first critical misalignment is
reached at ¢ = 0.00643. At this point the beam buckles into an out-of-plane equilibrium configuration with
further misalignment. Misalignment is increased until the stable out-of-plane equilibrium at point o
(a =0.00745) is reached in Fig. 9 of (Orloske et al., 2005). From this configuration, speed is increased from
¢ = 0.9 with fixed misalignment. Fig. 13 illustrates how the eigenvalues of branch o in Fig. 15 of (Orloske
et al., 2005) evolve with increasing speed. At section p, a pair of purely imaginary, complex conjugate
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Fig. 12. Eigenvalues about the third out-of-plane solution branch in Fig. 9 of (Orloske et al., 2005) when ¢ =0.9. The dashed lines
correspond to eigenvalues that cause instability.
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—

eigenvalues coalesce and divergence instability occurs. Therefore, like the trivial and planar equilibria, out-of-
plane equilibria may also lose stability for sufficiently high translation speed.

4.3. Vibration modes

Because the axially moving beam system is gyroscopic, the eigenfunctions are complex, and the spatially
varying phase angle of the eigenfunctions indicates the phase difference between points along the span. In this
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Fig. 14. Vibration modes about the aligned, trivial equilibrium when ¢ = 0.3. The solid line is the real part and the dotted line is the
imaginary part. (a) Lowest mode, w = 3.15. (b) Second lowest mode, w = 5.59.
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Fig. 15. Vibration modes about the planar equilibrium when ¢ = 0.3 and a = 0.01. The solid line is the real part and the dotted line is the
imaginary part. (a) Lowest mode, w = 2.39. (b) Second lowest mode, w = 3.52.

work, the magnitude of the discretized eigenfunctions Y are normalized such that (MSA()TSA( =1 where the
overbar denotes the complex conjugate.

Egs. (10)—(13) are completely decoupled, so the vibration modes about the trivial equilibrium are also
decoupled as illustrated in Fig. 14. When the equations of motion are linearized about a planar equilibrium
solution, the planar deformation variables # and w decouple from the out-of-plane deformation variables v
and 0. The vibration modes about the planar equilibria have only two components as shown in Fig. 15.
The lowest frequency modes involve v and 6. When the equations of motion are linearized about an arbitrary
equilibrium configuration, all deformation variables are coupled and the vibration modes about such an out-
of-plane configuration contain all four deformation components. Examples are illustrated in Fig. 16. All
vibration modes in Figs. 14-16 contain the symmetric and anti-symmetric properties typically found in sta-
tionary clamped-clamped beams.
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Fig. 16. Vibration modes about the out-of-plane equilibrium specified by point g in Fig. 9 of (Orloske et al., 2005). The solid line is the real
part and the dotted line is the imaginary part. (a) Lowest mode, w = 1.76. (b) Second lowest mode, w = 3.34.

5. Conclusions

The nonlinear, three-dimensional, dynamic equations of motion for a misaligned translating beam are
linearized about an arbitrary equilibrium configuration. The eigenvalue problem for vibration about an



4338 K. Orloske, R.G. Parker | International Journal of Solids and Structures 43 (2006) 43234341

equilibrium is discretized using finite difference approximations of the derivatives. Stability and vibration

properties of the planar and non-planar equilibria include:

e The eigenvalues of the planar equilibria are strongly affected by changing speed. For the stationary beam,
the stability of the planar equilibrium is lost after the first critical misalignment through divergence insta-
bility. A non-zero translation speed of ¢ = 0.3 results in more complex eigenvalue behavior where both
divergence and flutter instabilities exist. When speed is increased to ¢ = 0.9 the eigenvalue behavior changes
dramatically from the ¢ =0.3 case, and, under a specific range of misalignments, the planar equilibria

regain stability after the first critical misalignment.

e At high speed (¢ = 0.9) more than one out-of-plane equilibrium configuration possesses stability. In con-

trast, at lower speed (¢ =0 and ¢ = 0.3) only the first bifurcated out-of-plane equilibrium is stable.

e When the equations of motion are linearized about a planar equilibrium solution, the planar deformation
variables u and w decouple from the out-of-plane deformation variables v and 6. This causes the vibration
modes about the planar equilibria to have only two components. In contrast, the vibration modes about

out-of-plane equilibria possess all four components.

Appendix

The G, are, using the notation i, v, W,@) to denote u, v, w, and 0 at an equilibrium solution,
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